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Abstract. Medium resolution (10-100m) optical sensor data such as those from the Landsat, 
SPOT, ASTER, CBERS and IRS-P6 satellites provide detailed spatial information for studies 
of ecosystems, vegetation biophysics, and land cover. While Landsat remains a cornerstone of 
medium resolution remote sensing, the ETM+ scan-line corrector failure in 2003 has 
highlighted the need for methods to integrate radiometry from multiple international sensors 
in order to create a consistent, long-term observational record.  Such an approach needs to 
compensate for differing acquisition plans, sensor bandwidths, spatial resolution, and orbit 
coverage. Different processing approaches used in the calibration and atmosphere correction 
across sensors make integration even harder. In this paper, we propose a generalized 
reference-based approach to convert medium resolution satellite digital number (DN) to 
MODIS-like surface reflectance using MODIS products as a reference data set. This approach 
does not require explicit calibration and atmospheric correction procedures for individual 
medium resolution sensors, therefore minimizing the potential impact of those procedures due 
to among-sensor differences. Therefore, data in MODIS era from different sources such as 
Landsat TM/ETM+, IRS-P6 AWiFS, and TERRA ASTER can be combined for time-series 
analysis, biophysical parameter retrievals, and other downstream analysis. Our results from 
Landsat TM/ETM+ show that this approach can produce surface reflectance with a similar 
accuracy to physical approaches based on radiative transfer modeling with mean absolute 
differences of 0.0016 and 0.0105 for red and near infra-red bands respectively. The 
normalized MODIS-like surface reflectances from multiple sensors and acquisition dates are 
consistent and comparable both spatially and temporally with known trends in phenology.  

Keywords: MODIS, Landsat, ASTER, CBERS, AWiFS, data fusion, relative atmospheric 
correction, surface reflectance 

1 INTRODUCTION 
Medium resolution (10-100m) optical satellite sensors provide a spatial resolution that is 
suitable for monitoring biophysical and land cover processes at local, regional and global 
scales [1] and have been used widely to detect environmental changes [2,3]. These systems 
include the Multi-spectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic 
Mapper plus (ETM+) on the Landsat series satellites, the High Resolution Visible (HRV), 
High Resolution Visible Infrared (HTVIR), and High Resolution Geometric (HRG) sensors 
on SPOT series satellites, the Advanced Wide Field Sensor (AWiFS) and Linear Imaging 
Self-Scanner (LISS) III sensors aboard Indian Remote Sensing Satellite (IRS) [4], the Charge 
Coupled Device (CCD) camera aboard China-Brazil Earth Resources Satellite (CBERS) [5], 
and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [6] on 
the EOS/TERRA platform.   
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The Landsat satellites have been providing earth observation data continuously since early 
1970s, and form a cornerstone for medium spatial resolution remote sensing. Maintaining the 
continuity of Landsat-like data is a critical need within the Earth Science community [7]. 
However, the failure of the Scan-Line Corrector (SLC) mechanism on Landsat 7 in 2003 and 
increasing age of Landsat 5 have threatened this continuity. While a new Landsat Data 
Continuity Mission (LDCM) satellite is now scheduled to launch in the end of 2012, the 
difficulties in maintaining Landsat continuity have highlighted the need to combine the 
capabilities of existing international sensors to provide a more robust observational record 
[8]. Such an approach can also provide more frequent observations necessary for monitoring 
rapid vegetation phenological changes during the growing season.  

However, combining satellite observations from different platforms and sensors is 
complicated by their intrinsic differences in band configuration, acquisition time, illumination 
and viewing geometry, and radiometric calibration procedures. Surface reflectance derived 
from sensor radiance should be the basis for combining data from different sensors because 
theoretically it is a physical measurement not affected by instrument calibration issues or 
atmospheric effects, and is often a preferred input for deriving high-level biophysical 
products such as leaf area index and surface albedo. It provides a consistent long term data 
record for an individual sensor and helps to reduce errors in land cover change detection 
caused by atmospheric effects [9, 10].  

Atmospheric correction can be accomplished using a physical radiative transfer model or 
a purely empirical approach [9]. The physical approach requires a detailed atmosphere profile 
including aerosol optical depth, ozone and water vapor content. Empirical approaches rely on 
ground measurements or are based on some assumptions. For example, dark object 
subtraction (DOS) approaches assume the darkest objects in a scene converge to a predefined 
surface reflectance [11]. Relative radiometric correction approaches require pseudo invariant 
features (PIFs) and assume those features are spectrally stable over time [12-15]. However, 
these ground invariant features may be limited by atmospheric and land cover or phenology 
changes. An extension of relative radiometric correction is to use simultaneously acquired 
coarse resolution image as reference. Olthof et al. [16] normalized Landsat ETM+ scenes 
using the 10-day composite SPOT VEGETATION (VGT) data as reference and produced 
Landsat ETM+ mosaics for the Hudson Bay Lowlands and found that the radiometric 
accuracy of the mosaic products were similar to those achieved through the radiometric 
correction approach using PIFs from overlapping Landsat images.  

Aerosol optical thickness (AOT) is a major input to physical approaches for atmospheric 
correction. Due to lack of in situ AOT measurements for every image acquisition, AOT needs 
to be retrieved from an image itself using in an operational atmospheric correction approach. 
Kaufman et al. [17] found that for dark dense vegetation (DDV), simple relationships exist 
between the surface reflectance in TM band 7 (mid-IR) and those of band 1 (blue) and 3 (red). 
The aerosol optical depth can be estimated based on the actual observed top-of-atmosphere 
(TOA) reflectance and the predicted surface reflectance for these targets. This approach has 
been used in the Moderate Resolution Imaging Spectroradiometer (MODIS) surface 
reflectance algorithm [18] and has been implemented in the Landsat Ecosystem Disturbance 
Adaptive Processing System (LEDAPS) for processing Landsat TM and ETM+ images [10]. 
Unfortunately, this approach can only be applied to sensors that have the blue or middle 
infrared bands necessary for retrieving AOT.  

Table 1 lists the spatial resolution and bandwidths from Landsat TM/ETM+, ASTER, 
AWiFS and CBERS-2 CCD as compared to the MODIS instrument. Three medium resolution 
sensors (ASTER, AWiFS and CBERS) have similar bandwidths to the Landsat TM/ETM+ 
but all are wider than MODIS. However, the DDV AOT algorithm of Kaufman et al. can not 
be applied to these three sensors due to the lack of either blue band (ASTER and AWiFS) or 
mid-infrared band (AWiFS and CBERS) from the same sensor. Physical approaches to 
correcting atmospheric effects cannot be applied without additional aerosol information.  
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Even if satellite data could be atmospherically corrected by either a physical or empirical 
approach, surface reflectance from different sensors may still not be comparable due to 
intrinsic differences in sensor bandwidths or viewing and illumination geometries. One 
approach to making a consistent data set from multiple sensors is to normalize measurements 
from those sensors using a consistent data set. In this paper, we present a generalized 
reference-based empirical approach for converting medium resolution data product from 
digital number (DN) to a standard surface reflectance product and demonstrate its use for the 
medium spatial resolution data in MODIS-era. We use the globally available, consistent 
MODIS surface reflectance products as the reference. As opposed to a physically-based 
atmosphere correction approach (e.g. LEDAPS), this empirical approach is a relative 
correction and therefore the corrected surface reflectance is a kind of "MODIS-like" surface 
reflectance. It provides a way to standardize satellite data from different medium resolution 
sensors to one standard and thus allow continuous time-series analysis and land cover change 
detection. Our approach builds on a long history of regression-based image normalization 
procedures from the remote sensing literature [12, 14, 16], and provides a practical 
"operational" framework for merging information from multiple sensors. Here we first 
provide a detailed description of this approach. We then present the results on applying this 
approach to Landsat, AWiFS, and ASTER data sets and discuss the advantages and 
limitations of this approach. 

Table 1. Bandwidths and spatial resolution of Landsat TM/ETM+, TERRA ASTER, IRS-P6 AWiFS , 
CBERS-2 CCD and MODIS. 

Landsat 
TM/ETM+ 

TERRA 
ASTER 

IRS-P6 
AWiFS 

CBERS-2 
CCD 

TERRA/AQUA 
MODIS 

30 meters 15 m, 30 m 56 meters 20 meters 250 m, 500 m 
B1: 0.45-0.52   B1: 0.45-0.52 B3:   0.459-0.479 
B2: 0.53-0.61 B1: 0.52-0.60 B2: 0.52-0.59 B2: 0.52-0.59 B4:   0.545-0.565 
B3: 0.63-0.69 B2: 0.63-0.69 B3: 0.62-0.68 B3: 0.63-0.69 B1:   0.620-0.670 
B4: 0.78-0.90 B3: 0.76-0.86 B4: 0.77-0.86 B4: 0.77-0.89 B2:   0.841-0.876 
B5: 1.55-1.75 B4: 1.60-1.70 B5: 1.55-1.70  B6:   1.628-1.652 
B7: 2.08-2.35 Cover B5-B8   B7:   2.105-2.155 

 

2 APPROACH 

2.1 A Generalized Reference-Based Approach 
The generalized reference-based approach uses empirical relationships to convert raw satellite 
measurements to surface reflectance or other target biophysical measurements. The empirical 
relationships are built at the MODIS resolution using MODIS surface reflectance products as 
the reference.  

The basis of this approach is that homogeneous pixels of the same land cover type have 
the same surface reflectance regardless of patch size, and that the seasonal and bidirectional 
reflectance changes of those pixels should also be the same for different patch sizes given 
each land cover type does not split into two or more types (1 to n) during a short period. The 
relationship of each land cover type between acquisition date and target date remain 
approximately same for different resolution images [10, 19]. Therefore, the relationships built 
on the MODIS data and the aggregated medium resolution data can be applied to medium 
resolution data to produce surface reflectance at a target date (e.g. MODIS acquisition date).     
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 As shown in the schematic diagram (Fig. 1), the medium resolution data is first precision 
registered and orthorectified, reprojected and resampled to the MODIS resolution. An 
unsupervised classification is applied to the medium resolution data. A majority spectral 
cluster type of each MODIS pixel based on medium resolution pixels is computed and also 
used as criteria to determine homogeneity of MODIS pixel. Relationships between medium 
resolution data and cloud-free MODIS surface reflectance for each cluster are then built using 
"pure" coarse-resolution homogeneous pixels. The pure pixel at MODIS resolution for each 
cluster type is determined by the predefined percentage of majority cluster (default >20%). 
Only cloud-free pixels on both MODIS and medium resolution image can be selected as 
samples. Statistical relations between surface reflectance and satellite DNs are first built on 
the coarse resolution pure samples for the same cluster type. These relations are then applied 
to the original medium resolution data and thus produce surface reflectance for medium 
resolution data. For small clusters (default <1% of total pixels) without enough good "pure" 
samples (default <15) to work on, or correlation between DNs and MODIS data for the 
cluster is worse than that from whole image, a global relation regardless of cluster type will 
be used as a backup. 

Differing from traditional empirical approaches that need to measure surface reflectance 
on the ground, this approach takes ground "truth" from MODIS data. MODIS surface 
reflectance products remove the water vapor and aerosol effects using a physical approach 
and provide pixel level data quality. The high quality MODIS data represent one of the most 
accurate data records we achieved today, and are thus an appropriate data source to use as a 
reference data set. This approach is different from the normalization method by Olthof et al. 
[16] that used random pixels as samples. We used the cluster-based pure homogeneous pixels 
as samples; this allows our approach to be generalized and deal with various seasonal changes 
from different surface types and can be extended to other biophysical parameters. 

 
Fig. 1. Schematic diagram of the general empirical approach that corrects the 
medium resolution digital number (DN) to surface reflectance using MODIS surface 
reflectance as a reference data set.   

2.2 Linear Correction Model 
Empirical atmospheric correction approaches such as the dark object subtraction approach 
[11] and the radiometric rectification approach [12-14, 16] treat relations between DN and 
surface reflectance linearly. We also use a linear form to relate MODIS surface reflectance 
and medium resolution satellite DN for each cluster type. It can be expressed in: 

xbay *+= ,       (1) 

where y represents MODIS surface reflectance and x represents the aggregated digital number 
(DN) from the medium resolution image, and a and b are the intercept and slope. Note that 
only cloud-clear and "pure" homogeneous pixels are used to build relation for each cluster 
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type. If number of "pure" samples is less than predefined threshold, a global relation 
regardless of cluster type will be used as a backup.  

Equation (1) allows converting DN to surface reflectance in one step without involving 
calibration process. It is a type of relative atmosphere correction since it uses MODIS surface 
reflectance as a reference. As opposed to most relative atmospheric correction methods, this 
approach relies on a MODIS observation instead of time-series pseudo invariant features 
(PIFs) that can be difficult to identify.  

In Eq. (1), differences between MODIS and medium resolution data are unavoidable even 
if we strictly use high-quality MODIS observations and medium resolution data. Errors in 
medium resolution data (x coordinate) may be due to uncertainty in satellite sensor 
characteristics or preprocessing approaches. Variations in the MODIS surface reflectance (y 
coordinate) may be caused by sensor calibration and atmospheric correction. The theoretical 
accuracy of  MODIS surface reflectance have been documented by Vermote [18, 20] as 
0.005, 0.014, 0.008, 0.005, 0.012, 0.006 and 0.003 for seven MODIS land bands respectively 
(see Table 2). 

Another source of errors comes from the geolocation uncertainty associated with 
matching observations from the two sensors. A pixel’s footprint from two sensors cannot 
match exactly. The mismatching error can be reduced by decreasing spatial resolution as we 
assume surface reflectance is linearly scalable. However, reducing spatial resolution also 
reduces the dynamic data range of samples and may lead to less stable parameters in Eq. (1).   

To consider errors in both coordinates, we adopted the merit function as defined in Press 
et al. (2007) for a general linear model. 

 

∑
−

= +
−−=

1

0
222

2
2 )(),(

N

i xiyi

ii

b
bxayba
σσ

χ  ,    (2) 

where xiσ and yiσ are the standard deviations of x and y for the i-th point respectively. N is 
the total number of samples, and a and b are the intercept and slope for Eq. (1). The weighted 
sum of variances in the denominator is the variance of the linear combination ii bxay −− of 

two random variables ix  and iy , 
 

222)( xiyiii bbxayVar σσ +=−−  .      (3) 
 

As Eq. (2) becomes nonlinear while searching minimum values of merit function with 
respect to a and b, a general non-linear minimization approach was used to determine a and b. 
We used a software package from Numerical Recipes in C [21] to solve this equation.   

The choice of transform equation is totally depend on the relation of reference product and 
satellite DN value. A linear form is acceptable for surface reflectance when the satellite DN 
value is calibrated to at-sensor radiance [12]. A nonlinear form is more appropriate for some 
biophysical parameters such as leaf area index (LAI). Although each cluster uses a linear 
form to convert DN to surface reflectance, the overall conversion for whole image involves 
different clusters and thus is a nonlinear transformation. In this way, areas with different 
aerosol effects can be corrected using different equations if they are statistical separable in the 
unsupervised classification process.   

2.3 Inputs from MODIS Products 
The MODIS sensor aboard the Terra and Aqua platforms provides coarse resolution data 
products covering the period since 2000 for global-scale climate and ecosystem studies [22]. 
The MODIS land products provide information at spatial resolutions of 250, 500 and 1000 
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meters. MODIS surface reflectance is processed routinely, and pixel-based quality control 
information is associated with each product. The MODIS land products have been partially 
validated in "validated stage 1" [23]. The MODIS data processing algorithms are consistent in 
each data collection processing. The MODIS data products have been used in many 
applications since they are transparent, consistent, and freely available. For these reasons, we 
choose MODIS data as a reference in our study.  

Three types MODIS surface reflectance products can be used as reference for our 
empirical model. They are the MODIS daily surface reflectance product (MOD09), the 
MODIS 16-day nadir Bi-directional Reflectance Distribution Function adjusted (BRDF-
adjusted) surface reflectance (NBAR) (MOD43/MCD43) product, and the post-processed 
MODIS daily NBAR data (not part of the MODIS standard product suite).  

The MODIS 500m daily surface reflectance product (MOD09GHK in collection 4 and 
MOD09GA in collection 5) can be used as a reference if viewing and solar geometries are 
similar to those for the medium resolution image. It corrects for the effects of atmospheric 
gases, aerosols and thin cirrus clouds [18]. The surface reflectance is retrieved from a 
radiative transfer model (Second Simulation of a Satellite Signal in the Solar Spectrum or 6S 
in short) using atmospheric inputs from NCEP (ozone, pressure) or directly derived the 
MODIS data (aerosol, water vapor). The surface reflectance product has been partially 
validated from a number of independent measurements and found approximately 90% of 
evaluated data are within the expected theoretical uncertainty [18, 20].  

Though the MODIS daily surface reflectance provides high-quality surface reflectance at 
coarse resolution, the daily observations for any given location may be viewed from an off-
nadir geometry and thus be affected by BRDF effects. The BRDF effects cannot be removed 
in the surface reflectance product for the medium resolution sensor produced by the general 
empirical approach. This may also lead to a higher uncertainty for the linear relation model. If 
timing is not a key in the application, a daily surface reflectance from a different day 
observed from nadir view (one every 16 days) is a possible substitute.   

The second option is to use the MODIS 16-day NBAR product (1km MOD43B4 in 
collection 4 and 500m MCD43A4 in collection 5) as a reference data set. The MODIS NBAR 
product is computed from the MODIS BRDF parameters product based on the high-quality 
daily angular surface reflectance from each 16 day period [24]. The angular observations 
from each 16-day period are normalized to a nadir-viewing surface reflectance. In MODIS 
collection 5 processing, MODIS data from both the Terra and Aqua platforms are combined 
as inputs and BRDF products are produced at 500m resolution. The 8-day moving window 
approach was used in the production and thus there is a 16-day MODIS NBAR product for 
every 8-day period. The MODIS BRDF and NBAR products are also partially validated with 
independent measurements and shows good agreements with the field measurements [25]. 
Since the MODIS NBAR data exhibits relatively smooth seasonal trends, it was an input to 
product MODIS land cover product [26]. For applications that focus on seasonal and inter-
annual changes, MODIS NBAR product is a good choice.  

The third choice is to produce a MODIS daily NBAR data product as reference. Although 
not part of the standard MODIS product suite, the daily NBAR data can be produced from 
daily surface reflectance product and MODIS BRDF parameters by using the magnitude 
inversion approach. The magnitude inversion is a backup algorithm used in the MODIS 
BRDF/Albedo product. It takes BRDF shape as a priori information and adjusts BRDF curve 
to the observed bi-directional reflectance [24]. For daily NBAR, the magnitude inversion 
approach can be simplified as 

 

 
),,,(

),,(*),,0,(),0,(
Pf

Pf
vi

vi
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ϕθθρϕθθϕθθρ === ,   (4) 
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where iθ , vθ and ϕ  are the illumination zenith angle, viewing zenith angle and relative 

azimuth angle respectively. ),,( ϕθθρ vi is the daily bi-directional surface reflectance. 

),,,( Pf vi ϕθθ  is the computed bi-directional reflectance from the MODIS semi-empirical 
BRDF model. P represents the BRDF parameters from MODIS product. The nadir viewing 
reflectance satisfies the condition of 0=vθ . The bidirectional reflectance from MODIS 
BRDF parameters can be computed with 

 
),,(*),,(*),,,( ϕθθϕθθϕθθ vigeogeovivolvolisovi KPKPPPf ++= ,  (5) 

 
where isoP , volP  and geoP are the MODIS BRDF parameters for isotropic, volumetric and 

geometric scattering respectively. ),,( ϕθθ vivolK and ),,( ϕθθ vigeoK are the kernels for the 
volumetric and geometric scattering respectively. In the MODIS BRDF product, the 
volumetric scattering kernel is derived from a radiative transfer model by Ross [27] under the 
thick vegetation coverage condition, and the geometric scattering kernel is derived from a 
geometric optical model by Li and Strahler [28] under sparse vegetation conditions. The 
complete formulas for two kernels are documented in Lucht et al [29] and Schaaf et al. [24]. 

The BRDF effects associated with MODIS daily observations are obvious as illustrated in 
Figure 2a shows the composition of MODIS surface reflectance of tile h11v04 acquired on 
April 26, 2006. In Fig. 2b, view zenith angle varies from 0 to 65 degrees. This tile is 
composed from two separate MODIS orbits. The BRDF effects are obvious from backward 
scattering (under the diagonal break line) to forward scattering (up the diagonal break line) 
within this MODIS image. We corrected the MODIS daily surface reflectance to daily NBAR 
using MODIS BRDF parameters during same period. Figure 2c shows the composition of the 
corrected daily NBAR data. The BRDF effects in Fig. 2c are reduced and differences around 
the diagonal break line disappear. 

 
 

   
      (a) daily surface reflectance          (b) viewing zenith angle             (c) daily NBAR 

Fig. 2. MODIS daily surface reflectance (a) of tile h11v04 on April 26, 2006, the 
viewing zenith angle (b) (0 to 65 degrees) and the corrected daily NBAR (c). 

 
This third option for MODIS reference data allows capture of daily variation in surface 

conditions and thus is appropriate for applications requiring daily revisit, such as crop growth 
monitoring. However, the separate step of processing and the fact that the off-nadir view has 
a larger foot print (at 55 degree off-nadir view, a MODIS pixel may be as large as 1km by 
2km compared to the nadir view size of 0.5 by 0.5 km) may cause larger uncertainty of 
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surface reflectance.  Thus the MODIS samples need to be aggregated to an even coarser 
resolution than original 500 meters. 

2.4 Unsupervised Classification and Optional Spatial Aerosol Information 
Unsupervised classification approaches bin continuous values into clusters based on their 
statistical distributions. We used the Iterative Self-Organizing Data Analysis Technique 
(ISODATA) to map spectral clusters in the medium resolution imagery.  These clusters can 
then be related to "pure" (homogenous) observations at the MODIS resolution using the linear 
model in Eq. (1). The ISODATA classifier splits and merges clusters iteratively until 
classification conditions (e.g. number of classes or number of iteration) are satisfied. Note 
that the same surface type located in areas with significant differences in atmospheric 
conditions can be separated into different clusters. This ensures that different models (e.g. 
linear equation in this paper) can be applied under different atmospheric conditions and thus 
eliminate some effects caused by varying aerosol distribution.  

The cluster map is also useful to determine the homogeneity of a coarse resolution cell by 
checking the percentage of a dominant cluster in a coarse resolution cell. Though the relations 
between surface reflectance and DNs are spatially scalable under uniform atmospheric 
condition, some biophysical parameters are not. It’s critical to use pure homogeneous MODIS 
pixels as samples for those biophysical parameters and thus allow the relation built on the 
coarse resolution products to be extended to the original medium resolution image.  

For a large area with varying aerosol distribution, additional aerosol information is 
helpful.  Our approach does not require an actual aerosol optical depth. A relative variation 
map that distinguishes different levels of aerosol loading is sufficient. A linear relationship 
can be established for individual regions with homogenous aerosol loadings and applied to 
those regions based on the aerosol distribution map.  

3 RESULTS AND ANALYSIS 

3.1 Landsat ETM+ Surface Reflectance 
The Terra MODIS crosses the equator at about 10:30AM local solar time, roughly 30 minutes 
later than Landsat 7. Their orbital parameters are identical, and as such the viewing (near-
nadir) and solar geometries are close to those of the corresponding Landsat acquisition. This 
allows us to direct use MODIS daily surface reflectance (first input option) as a reference for 
Landsat 7 ETM+ data normalization.  

Fig. 3 shows a Landsat ETM+ scene covering the Washington, D.C. area (WRS-2 path 15 
and row 33) acquired on October 5, 2001. Since this Landsat scene is located in the MODIS 
tile boundary, several MODIS tiles are required to cover this Landsat scene. The MODIS 
500m daily surface reflectance product (MOD09GHK) was first mosaiced and re-projected to 
the same projection and extent as the ETM+ scene (Fig 3a). The MODIS 1km daily state file 
(MOD09GST) was used to filter out clouds and cloud shadows. Only high-quality and clear 
surface reflectance values are reserved for creating the linear regression. Figure 4 shows the 
relationship between Landsat DN and MODIS surface reflectance at 1km resolution for red 
(a) and NIR (b) respectively. Spatial resolution has been rescaled from 500m to 1km to 
reduce variations from geolocation and resampling errors. Good linear relations for red and 
NIR can be seen in Fig. 4. The low values in the scatter plot for the red band (mostly water) 
(Fig. 4a) show different trends compared to the high values (mostly land). The different 
atmospheric effects and sensor spectral responses over water and land may cause this 
discrepancy. This can be partially solved in our approach by using different correction 
equations for water cluster. Figure 3b shows the converted Landsat ETM+ surface reflectance 
using our empirical approach and linear equation with merit function in Eq. 2. As ETM+ 
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scene was acquired on the same MODIS acquisition (target) date, land cover changes can be 
neglected and thus the requirement for the cluster based correction can be relaxed or 
removed. In Fig. 3b, we used a high threshold (> 95% of majority cluster in MODIS pixel) to 
ensure that only good "pure" MODIS samples are applied for large clusters. For small clusters 
without enough "pure" samples to work on or correlation is not significant, a global relation 
regardless of cluster type was used. The same threshold was used in this paper when 
acquisition dates for medium resolution data and MODIS data are same.  

To compare with surface reflectance derived from physical approach, we also computed 
ETM+ surface reflectance using the LEDAPS approach (Fig. 3c). The LEDAPS was 
developed to create a Landsat-based surface reflectance product for North America to support 
the North American Carbon Program (NACP) [10]. It adopts the MODIS atmospheric 
correction approach for Landsat TM and ETM+ data, with aerosol thickness derived from the 
imagery itself. As LEDAPS uses the same "6S" approach for Landsat atmospheric correction, 
uncertainties for Landsat and MODIS surface reflectance are comparable [10]. Figure 3b and 
3c shows very similar surface reflectance composited from near-infrared, red and green bands 
with same stretches. 

 

   
  (a) MODIS     (b) empirical approach   (c) LEDAPS 

Fig. 3. MODIS surface reflectance (a) and Landsat ETM+ surface reflectance 
derived from the reference-based approach (b) and LEDAPS physical approach (c) 
for Washington DC area (Landsat WRS-2 path 15 and row 33). Black areas 
represent clouds, cloud shadows, missing or poor quality data that can not be 
selected as a sample. All images are shown in same projection and extent. 
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Fig. 4. Scattering plots of Landsat digital number and MODIS surface reflectance 
(*10000) for red (a) and NIR (b) respectively. 
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The differences of Landsat ETM+ surface reflectance from the reference-based approach 
and the LEDAPS approach are further compared with mean difference and mean absolute 
difference. In the comparison, we use d(r1,r2) to represent the mean difference between 
reflectance r1 and r2 and use ad(r1, r2) to represent the mean absolute difference between r1 
and r2. 

Table 2 shows the mean absolute difference and mean difference among the MODIS 
surface reflectance, Landsat ETM+ surface reflectance from our empirical approach and 
Landsat ETM+ surface reflectance from the physically-based LEDAPS approach. The 
comparison between MODIS and Landsat surface reflectance is evaluated at the spatially 
aggregated MODIS resolution (1 km for this table). The comparison of Landsat ETM+ 
surface reflectance from our empirical approach and LEDAPS is evaluated at the original 
ETM+ resolution (28.5 meters). Table 2 shows that the differences between general empirical 
approach and LEDAPS approach (d(g,l) and ad(g,l)) are very small. The mean difference 
between empirical approach and LEDAPS approach are 0.0007and -0.0102 for red and NIR 
band respectively, which is smaller than the theoretical accuracy of MODIS surface 
reflectance itself (0.0050 for red and 0.0140 for NIR). The mean differences of surface 
reflectance between MODIS and ETM+ with general empirical approach (d(m,g)) are 
neglectable, which means the differences between empirical approach and LEDAPS approach 
(d(g,l) and ad(g,l)) are mainly due to the intrinsic differences between MODIS and LEDAPS 
surface reflectance (d(m,l) and ad(m,l)). The large mean absolute differences between 
MODIS and ETM+ empirical surface reflectance (ad(m,g)) are due to the bandwidth 
differences and geolocation/resampling errors. However, the merit function (Eq. 2) still 
produced a very good fit (negectable d(m,g)) given enough high quality samples are 
maintained.   

Table 2. Mean absolute difference (ad) and difference (d) among MODIS (m) and Landsat surface 
reflectance from the reference-based approach (g) and LEDAPS (l) (MODIS theoretical accuracy for 
surface reflectance is listed as MODIS_TA for similar ETM+ bands). 

 

ETM+ Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 
d(m, l) -0.0075 0.0012 0.0005 -0.0093 0.0141 -0.0011 

d(g, l) -0.0075 0.0004 0.0007 -0.0102 0.0156 0.0001 
d(m, g) 0.0000 0.0007 -0.0004 0.0002 -0.0020 -0.0014 
ad(m, l) 0.0080 0.0045 0.0054 0.0157 0.0177 0.0088 
ad(g, l) 0.0078 0.0024 0.0016 0.0105 0.0156 0.0005 

ad(m, g) 0.0053 0.0056 0.0069 0.0139 0.0138 0.0105 

MODIS_TA 0.0080 0.00050 0.0050 0.0140 0.0060 0.0030 
 
 
A strong linear relation between the empirical and LEDAPS surface reflectance values 

can be also seen from the scatter plots in Fig. 5. However, the relationship deviates from the 
exact 1 to 1 line. This implies that the Landsat ETM+ surface reflectance from empirical 
approach may not precisely duplicate the true Landsat surface reflectance. Instead it generates 
a MODIS-like surface reflectance, corrected to replicate the MODIS spectral bandpasses. 
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Fig. 5. Scattering plots of Landsat surface reflectance from the reference-based 
approach (MODIS-like) and LEDAPS approach for red (a) and NIR (b) 
respectively.   

3.2 AWiFS Surface Reflectance 
The AWiFS camera on the IRS-P6 (India ResourceSat) consists of two electro-optic modules 
(AWiFS-A and AWiFS-B) which provide a combined swath width of 740 km. It provides 
four spectral bands with 10 bit radiometric resolution and 56m nadir spatial resolution [30]. 
Given its frequent (4-5 days) revisit cycle and wide swath (740 km), AWiFS data are very 
useful for large area applications. In fact, the USDA National Agricultural Statistics Service 
(NASS) selected AWiFS data for their development of the 2006 Crop Data Layer [31]. 

While Landsat 7 ETM+ flies the same orbit as Terra MODIS, IRS-P6 AWiFS has 
different orbital path and thus different viewing geometries for the same location even though 
the satellite overpass times are nearly identical (10:30AM local time at the equator). The 
direct use of MODIS daily surface reflectance (first option) or MODIS NBAR data (second 
option) as the surface reference may limit the ability to detect daily surface changes. The 
BRDF corrected daily NBAR data (third option) is considered as a reference data set to 
correct AWiFS DN to surface reflectance in our test.  

The BRDF corrected MODIS daily NBAR data in Fig. 2c was used as the reference data 
set. Figure 6a shows the subset of the daily NBAR data on April 26, 2006. Figure 6b is the 
same day AWiFS surface reflectance produced by general empirical approach. Figure 6c 
shows the same day Landsat TM surface reflectance produced by empirical approach using 
same MODIS daily NBAR data as reference. The surface reflectance from Landsat TM and 
AWiFS look very similar visually in Fig. 6. The scatter plots between AWiFS and TM 
surface reflectance (Fig. 7) show that they agree closely. Table 3 shows the mean difference 
and the mean absolute difference between AWiFS and TM surface reflectance produced by 
our empirical approach. The differences between the two surface reflectance data sets are 
very small. Those differences may due to the discrepancy between the relative spectral 
response of AWiFS and TM [32] or a mismatch in the pixel’s footprint between the two 
sensors.   

 Table 3. Mean absolute difference and difference between AWiFS and TM surface reflectance from the 
reference-based approach (aggregated to 112m resolution for comparison). 

AWiFS/TM Band 2 Band 3 Band 4 Band 5 
Mean diff. -0.0009 -0.0015 0.0007 -0.0012 

Mean abs. diff. 0.0022 0.0056 0.0087 0.0108 
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    (a) MODIS               (b) AWiFS                     (c) Landsat TM 

Fig. 6. The MODIS daily NBAR (a), Landsat TM surface reflectance (b) and 
AWiFS surface reflectance (c) both corrected by the reference-based approach show 
similar color and spatial patterns. Black represents missing or poor quality data. All 
data were acquired on April 26, 2006. 
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        (a) red          (b) NIR 

Fig. 7. Scattering plots of AWiFS surface reflectance and Landsat TM surface 
reflectance in red (a) and NIR (b) band.   

3.3 Combining ASTER Scenes from Different Acquisition Dates 
Compositing satellite images from different acquisition dates are a challenge for medium 
spatial resolution data, especially when the satellite images are acquired from different 
seasons [33]. Using our approach, medium spatial resolution images from different 
acquisition dates can be normalized to a close and clear MODIS acquisition date in MODIS-
like surface reflectance. Figure 8 illustrates the processing result over central Virginia. In the 
test, we used ASTER scenes that were acquired from Fall 2005 to Spring 2006 (10/23/05, 
11/10/05, 1/27/06 and 4/10/06) and a MODIS image acquired on 4/10/2006. As three ASTER 
scenes (10/23/05, 11/10/05 and 1/27/06) were acquired from different MODIS acquisition 
date (4/10/06), the changes of vegetation phenology or land cover need to be considered. We 
used low threshold (> 50% of majority cluster in MODIS pixel) to extract "pure" samples and 
thus allow more clusters being processed with their specific cluster-based relations. Figure 
8(a) shows a map stitched from original L1B ASTER data with different acquisition dates (b). 
The differences of seasonality/BRDF are obvious on this map. However, those differences 
have been reduced in the mosaic map (d) of the BRDF/seasonality corrected ASTER images 
by using MODIS surface reflectance (c) as a correction reference. The remaining differences 
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between adjacent ASTER paths may reflect diverging land cover conditions through the 
growing season (e.g., same land cover on the ASTER acquisition date but different on the 
MODIS acquisition date thus causing a "1:n" non-function relationship). Results can be 
improved by using additional ASTER images to distinguish land cover types and avoid "1:n" 
relationship in models.  

Figure 9 shows scatter plots of the normalized ASTER surface reflectance and Landsat 
ETM+ surface reflectance. Landsat ETM+ SLC-off data was acquired on the same day (April 
10, 2006) as the MODIS target date. We used our reference-based empirical approach to 
produce Landsat ETM+ surface reflectance. We limited valid pixels in the comparison. In 
order to reduce the errors caused by the mis-registration, pixels from ASTER and Landsat are 
spatially averaged to the same coarser spatial resolution (60 m) for pixel-to-pixel comparison. 
Scatter plots in Fig. 9 show linear relations with r-squares of 0.642 and 0.721 for red and 
near-infrared bands respectively. The average absolute differences between ASTER and 
ETM+ surface reflectance are 0.0057, 0.0093, 0.0190, and 0.0212 for ASTER band 1(green), 
band 2(red), band 3(NIR), and band 4 (SWIR) respectively.  

 

          

10/23/05

10/23/05

1/27/06

4/10/06

4/10/06

11/10/05

1/27/06

 
 

(a) ASTER Digital Number    (b) ASTER Acquisition Date 
 

   
 

(c) MODIS Surface Reflectance        (d) Normalized ASTER Surface Reflectance 

Fig. 8. Seven ASTER scenes in digital number (a) acquired from different dates (b) 
are normalized to the MODIS-like surface reflectance (d) by using a MODIS 
surface reflectance (c) acquired on April 10, 2006 as reference.   

Journal of Applied Remote Sensing, Vol. 4, 043526 (2010)                                                                                                                                    Page 13

Downloaded from SPIE Digital Library on 10 Mar 2011 to 128.183.169.235. Terms of Use:  http://spiedl.org/terms



  

0

500

1000

1500

2000

0 500 1000 1500 2000

ASTER Surface Reflectance * 10000

ET
M

+ 
Su

rf
ac

e 
Re

fle
ct

an
ce

 * 
10

00
0 r-square =0.642

ave_abs_diff = 104 

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

ASTER Surface Reflectance * 10000

ET
M

+ 
Su

rfa
ce

 R
ef

le
ct

an
ce

 * 
10

00
0 r-square = 0.721

ave_abs_diff = 186

 
 

                                          (a) red    (b) NIR 
 

Fig. 9. Scattering plots of the normalized ASTER surface reflectance and Landsat 
ETM+ surface reflectance in red (a) and NIR (b) band. The scattering samples are 
close to 1:1 lines (diagonal lines).   

3.4 Combining Multiple Data Sources 
The general reference-based empirical approach provides a way to combine different medium 
resolution data sources to produce a consistent surface reflectance record when MODIS 
surface reflectance is used as a reference data set.  In this test, we mixed different medium 
resolution data for time-series analysis of crop phenology. Table 4 lists the available medium 
resolution data sources for our test site located in central Illinois. The medium resolution data 
sources include two ASTER scenes, two Landsat TM scenes, one Landsat ETM+ SLC-off 
scene and three AWiFS scenes. The MODIS daily surface reflectance product (option 1) is 
used as a reference data set if nadir view MODIS data is available (O1 in Table 4). Otherwise, 
the BRDF corrected daily NBAR (option 3) will be used instead (O3 in Table 4). The 
available data sources in Table 4 encompass the 2006 growing season for principal crops in 
the area. As multiple data sources need to be analyzed at one spatial resolution, all data 
sources have been co-registered, orthorectified and resampled to the coarsest spatial 
resolution (AWiFS at 56 m). Cloud masks for cloudy scenes (7/7/06 and 8/24/06) were 
created manually. Cloud masks should be aggressive and ensure only clear pixels are included 
as samples. Coarse resolution samples with partial coverage of medium resolution pixels due 
to clouds or missing are excluded from the selection.    

Table 4. List of available data sources during growing season (O1 is the first option that uses MODIS 
daily surface reflectance and O3 is the third option that uses MODIS daily NBAR data).  

Date 4/18/06 4/26/06 6/5/06 6/13/06 7/7/06 7/23/06 7/31/06 8/24/06 
Sensors ASTER AWiFS ASTER TM AWiFS ETM+ TM AWiFS 
MODIS O1 O3 O1 O3 O1 O1 O3 O1 

 
 
Fig. 10 shows surface reflectance produced from four different medium resolution sensors 

during April to August, 2006. A continuous seasonal trajectory can be seen from the image 
time series. Different surface types show different green-up dates with peak greenness 
occurring in the image of July 31, 2006.  
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           (a) 4/18/06, ASTER                    (b) 4/26/06, AWiFS              (c) 6/5/06, ASTER 

               

             (d) 6/13/06, TM                     (e) 7/7/06, AWiFS            (f) 7/23/06, ETM+ 

  
              (g) 7/31/06, TM                    (h) 8/24/06, AWiFS 

Fig. 10. Time series of surface reflectance produced by the reference-based 
approach from different data sources, shown using same RGB stretch (NIR: 0.1-0.5; 
red: 0.01-0.16; green: 0.01-0.12). 

 
Using the derived time series, we show the seasonal spectral evolution of major vegetation 

types (Fig. 11) in central Illinois in Fig. 12. In this plot, natural vegetation types such as 
woods (sample 1) and pasture (sample 2) green up as early as April. Their reflectance and 
NDVI values tend to be less variable during this period. The dominant crop types (soybeans 
and corn) green up in early June and reach peak greenness in late July. The two corn samples 
show different seasonality in both reflectance and NDVI plots, which may due to the different 
surface conditions or misclassification in the 2006 Cropland Data Layer (CDL). The claimed 
accuracy of the crop type is around 85-95% [31]. The soybean sample shows a similar 
temporal pattern to one corn site (sample 4) in the NDVI plot (Fig. 12c). However, their 
surface reflectances are quite different for both red (Fig. 12a) and NIR (Fig. 12b) bands. 
Soybeans show a much higher surface reflectance (around 0.60) in the NIR band while corn 
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only reaches 0.45. The NDVI values for crops and woods are similar at peak greenness, 
which may due to the low surface reflectance in the red band which thus saturates the NDVI 
value. The time-series surface reflectance reveals more growth information than NDVI values 
alone. 

 We compute MODIS NDVI values of same locations from the 8-day 250m MODIS 
surface reflectance composite product. The MODIS NDVI data (lines in Fig. 12c) show 
consistent time-series trends compared to the medium resolution data from different sensors. 
The forest sample shows the best fit to the MODIS NDVI time-series. The pasture sample 
shows similar time-series trends but consistently lower NDVI values than MODIS except for 
the last date (8/24/06). Crop samples also show similar time-series patterns with very close 
values during full growth season but lower values in early season. This may be due to the fact 
that MODIS 250m pixels for these sample locations are not pure homogeneous pixels. A 
larger coverage area from MODIS off-nadir observation also affects the sample homogeneity. 
For mixtures of pasture and crops, the NDVI values during early growing season are partially 
contributed by forest pixels. Since forest samples are located in large continuous tracts, it is 
more likely to correspond to a homogeneous pixel in the MODIS image. The time-series 
NDVI data from the forest sample fits to multiple medium resolution data very well. Both 
MODIS time-series and multi-sensor medium spatial resolution data reflect the forest 
phenology changes during this period. This agreement supports that medium resolution data 
from different sensors can be combined for the time-series analysis using the reference-based 
empirical approach. 

 
 

    

 

Fig. 11. Typical surface types in this area (central location: 40.094823N, 
89.512883W) and sample locations from the USDA 2006 Cropland Data Layer 
(CDL). 
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(c) NDVI 

Fig. 12. Typical surface types in this area show seasonal variations of surface 
reflectance (a and b) and NDVI (c) for different samples from different data sources 
during April to August, 2006. The seasonal variations of NDVI (c) from medium 
spatial resolution sensors are consistent with the MODIS NDVI time-series (MTS).  

Journal of Applied Remote Sensing, Vol. 4, 043526 (2010)                                                                                                                                    Page 17

Downloaded from SPIE Digital Library on 10 Mar 2011 to 128.183.169.235. Terms of Use:  http://spiedl.org/terms



  

4 DISCUSSION AND CONCLUSIONS 
Medium spatial resolution (10-100m) satellite data are extremely useful for local and regional 
remote sensing applications. The scan-line corrector failure of Landsat 7 and the age of 
Landsat 5 threaten (like the recent rapid increase in Landsat 5’s Traveling Wave Tube 
Amplifier (TWTA) helix current, which may cause the end of Landsat 5) the continuity of 
global medium resolution data archive before Landsat 8, or LDCM, starts to operate in 
December 2012. Though there are several mid-resolution data sources available, none of them 
can replace Landsat mission completely. However, combining these different medium 
resolution data sources can increase the frequency of observations, reduce the risk of a 
Landsat data gap, and enrich the global medium resolution data archive. The general 
reference-based approach proposed in this paper allows different data sources to be combined 
using one "standard" surface reflectance as a reference data set. 

Comparing to other relative rectification approaches that reply on pseudo invariant 
features (PIFs), the reference-based approach can be applied to areas where PIFs are hard to 
find. However, as this is a reference based approach, its applications are limited by the 
reference data set. Different from the reference-based approach used by Olthof et al. (2005), 
this general reference-based approach can be applied to normalize scenes that contain 
different seasonalities from different surface types. The reference-based approach can not 
only normalize scenes acquired from different dates to one close target date but also can 
combine remote sensing data from different sensors for time-series analysis. However, this 
approach cannot be applied to the situation when same land cover (cluster) shows on the 
medium resolution image but changes on the MODIS acquisition date and cause a "1 to n" 
non-function relationship. For example, bare soil cluster in medium spatial resolution image 
may split to different crops (or stay as bare soil) in the MODIS target date, we will not able to 
make one function transformation between soil type (1) in medium spatial resolution image to 
multiple crops (n) in MODIS target image unless additional information is provided. Through 
we only demonstrate the general reference-based approach for surface reflectance using a 
series of simple linear functions, the approach can be extended to non-linear situations (such 
as leaf area index).  

The MODIS reflectance products are the appropriate data sources for use as a reference 
due to unique characteristics of MODIS products: 1) MODIS has similar bandwidth to 
medium resolution data sources; 2) MODIS data products are consistent from each collection 
of processing; 3) MODIS provides daily global coverage data; 4) MODIS products have been 
validated in transparent validation exercises and provide comprehensive pixel level quality 
control flags and 5) MODIS products are freely available on-line and easy to access. There 
are three choices to use MODIS reflectance as a reference data set. One can use MODIS daily 
surface reflectance product or MODIS 16-day NBAR product directly. For the applications 
that need capturing variations on daily-basis, the BRDF effect corrected daily NBAR can be 
used as input. Though we only demonstrate MODIS data in this paper, other coarse resolution 
data products may be used as reference data set as well. 

Though the generalized reference-based approach is simple, the results using Landsat 
ETM+ show it can still achieve similar accuracy compared to physically-based atmospheric 
correction approaches. The differences between the two approaches are mainly due to the 
intrinsic differences between MODIS and Landsat ETM+ surface reflectance. This approach 
works as a relative atmospheric correction approach when MODIS target date is the same as 
medium resolution data. The corrected surface reflectance is a MODIS-like value, corrected 
to MODIS band pass.  

Different from other data fusion approaches such as the Spatial Temporal Adaptive 
Reflectance Fusion Model (STARFM) [34] and the Spatial Temporal Adaptive Algorithm for 
mapping Reflectance Change (STAARCH) [35], this approach only requires one target 
MODIS data and thus simpler and faster. However, it assumes that land cover types do not 
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change and split to 1:n relation between medium spatial resolution sensor and target MODIS 
acquisition date. Ideally, the medium spatial resolution data and MODIS data should be 
acquired from the same season in similar phenology stage. The STARFM and STAARCH 
approach need one and more Landsat and MODIS image pair at the same acquisition dates in 
additional to the target MODIS date. They allow fusing medium spatial resolution data from 
Landsat with high temporal resolution data from MODIS even surface land types changed. 
The STARFM and STAARCH approach use surface reflectance data as inputs and require 
input image pairs (Landsat and MODIS) are consistent and comparable [34, 35]. The 
generalized reference-based approach accepts DN, TOA reflectance or surface reflectance as 
input and normalizes input to reference-like data (MODIS-like surface reflectance in this 
paper). The normalized MODIS-like surface reflectance from multiple medium resolution 
sensors may be used as inputs for STARFM and STAARCH, which can provide additional 
input image pairs and thus improve data fusion accuracy. We will further explore this in the 
near future.  

There are two additional advantages associated with using MODIS surface reflectance as 
reference. First, the MODIS-like surface reflectance provides a way to standardize surface 
reflectance from different medium resolution sensors to one "standard" and thus allow 
consistent time-series analysis. Our test on the ASTER, TM, ETM+ and AWiFS data shows 
they can be combined to form a consistent medium spatial resolution time-series by using 
MODIS surface reflectance as a reference data set. Second, in theory, MODIS-like medium 
resolution surface reflectance data may be used to retrieve biophysical parameters for medium 
resolution data using MODIS algorithm directly and thus take advantages of the knowledge, 
experiences and lessons learned from MODIS product development. Other consistent coarse 
resolution data sources can also be used as reference. As we utilize MODIS products as a 
reference, our results in this paper are limited to the MODIS era.   

The accuracy of the general reference-based approach depends on several factors listed 
below. 

(a) data qualities of each medium resolution sensor and MODIS surface reflectance 
product  

The inherent radiometric and geometric qualities of medium resolution sensors will 
certainly affect the precision with which surface reflectance can be retrieved using either an 
empirical or physically-based approach.  It should be noted, however, that the empirical 
approach proposed here intrinsically compensates for inaccurate instrument calibration, 
providing that the relation between DN and radiance is still linear. 

(b) intrinsic difference in bandwidth and spectral response function  
Differences in spectral bandwidths and spectral response functions may alter the 

relationship between medium resolution DN and MODIS surface reflectance. We assume that 
the transformation of response functions between two sensors can be linked linearly. 
Therefore, the intrinsic difference in bandwidth has been accounted in the transformation. 
Additional investigation of intrinsic differences may be needed for specific sensors.       

(c) accuracy of matching samples from two images 
This factor is determined by the sensors’ geolocation accuracy and resampling strategy. 

The aggregated coarse resolution images can provide better location matching samples than 
fine resolution images as the ratio of geolocation error to pixel size decreases. However, 
coarse resolution samples reduce data dynamic range when aggregating from fine resolution 
to coarse resolution and thus average the spectral signals associated with "pure" surface types.  

(d) data range and distribution of samples  
Well distributed high-quality samples across the full range of DN values can help to 

reduce the variability about the linear transform.  
(e) accuracy of cloud mask from two images 
The selected samples must be cloud clear from both images. The MODIS cloud 

information can be extracted from MODIS product. We define cloud mask for medium 
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resolution images manually in this paper. An accurate automatic cloud and shadow detection 
algorithm for the medium resolution data is needed for automatic processing.  

(f) spatial variation of aerosol optical depth  
The spatial variation of atmospheric condition especially aerosol optical loading may alter 

the relation between DN values and surface reflectance. The variation of aerosol loading can 
be partially addressed in the unsupervised classification process by assigning different 
clusters for a land cover type with different aerosol conditions.  Additional aerosol 
information from other sensors or image itself may be used to improve results. We will 
further explore this approach for the imagery with spatially variable aerosol loadings. 
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